
SpiderMonkey
Byte-sized Architectures

Daniel Minor
Staff SpiderMonkey Engineer / Mozilla

https://github.com/dminor



What is a Spider Monkey?
● Genus Ateles
● Most intelligent New 

World Monkey
● Lack thumbs, but 

have very long limbs 
and tails



What is SpiderMonkey?

● The JavaScript engine in Firefox
● An engine is the part of the browser which runs 

JavaScript code
● An engine consists of:

○ Parsers
○ Interpreters
○ Just-in-time compilers
○ Garbage collection
○ A library of useful functions



Simplified SpiderMonkey Architecture



Frontend



What is the Frontend?
Takes JavaScript source provided by the host environment

And transforms it into a format usable by the rest of the engine.



Tokenizer
A ‘token’ is an indivisible unit in the input to the parser:

The ‘tokenizer’ divides the input source

into a list of tokens



Parser
The parser uses the list of tokens and the grammar of JavaScript

to construct an Abstract Syntax Tree (AST)



Parsers in SpiderMonkey
● SpiderMonkey has four parsers!
● Syntax Parser

○ Runs quickly
○ Avoids allocating memory when possible
○ Only checks for syntax errors

● Full Parser
○ Runs more slowly
○ Builds the AST

● And there’s a version of each parser for UTF-8 and UTF-16 input.



Virtual Machines and Bytecode
A virtual machine is an abstract definition of a computer

● Defined at a higher level than the instruction set of an actual CPU
● Bytecodes are the instructions understood by the virtual machine

○ e.g. bytecode from SpiderMonkey:



Bytecode Generation
AST (input)

Bytecode (output)

Bytecode
Generation

Interpreter (consumer)



Interpreters



What is an interpreter?
Basically a program which runs the instructions for another program :)

Can work by walking the Abstract Syntax Tree directly

● Early versions of Ruby worked this way
● Simpler, but slower

Or by implementing a virtual machine:

● Interpreter runs in a loop, executing each bytecode one by one
● Implemented as a giant case or goto statement

○ Each label corresponds to a bytecode
● Faster



The “C++” Interpreter
● Simplest interpreter in SpiderMonkey
● Implemented as a giant goto statement inside a loop
● Each label corresponds to a bytecode

○ e.g. GetArg:



Baseline Interpreter
Similar to the C++ interpreter…

But it also collects type information and other metadata as it runs!

● e.g, consider this function again:

● The parameter x is likely a number, probably an integer

How can we use this information?



Just-in-time
Compilers



Just-in-time Compilers
● Use data gathered while interpreting code to choose what to compile
● Most JavaScript code is only executed once!
● Trade off between compile time and execution time:

○ Baseline interpreter: no compile time at all, but runs slowly
○ Baseline compiler: faster compile time, generated code is not optimized
○ Ion: slower compile time, generated code is optimized



C++ Representation of JavaScript Scripts

JSScript

BaseScript

ImmutableScriptData

JitScript

BaselineScript

IonScript

Provides: Metadata

Provides: Bytecode
Used by: C++ Interpreter

Provides: Inline caches
Used by: Baseline Interpreter

Provides: Native code
Used by: Baseline Compiler
Provides: Optimized native code
Used by: Ion



Inline Caches
● A dynamic dispatch is when we branch based upon type information

○ e.g. whether the function is applied to strings or integers
● An inline cache stores the result of previous dynamic dispatches

○ Avoids cost of branching
○ Code is specialized for the particular type
○ Stored inline with the function itself

● This also gives us metadata:
○ Type information
○ Which parts of a function are actually used



Baseline Interpreter
● Basic idea: replace opcodes with stubs in inline caches

● The baseline interpreter will create stubs in the inline cache for:
○ BinaryArith.Int32Mul
○ BinaryArith.Int32Add

● Executing this code will be much faster next time (maybe 6x faster)
● Stores data in an intermediate format called CacheIR



Baseline compiler
● Generates native code for each bytecode in the script
● Avoids overhead of interpreter switch / dispatch loop

○ Still uses Inline Caches to handle different types
● Is maybe 2x faster than Baseline Interpreter



Ion
CacheIR

Bytecode



Ion

Warp Builder

CacheIR

MIR

Bytecode



Ion

Warp Builder

Optimizer

CacheIR

MIR

LIR

Bytecode



Ion

Warp Builder

Optimizer

CacheIR

Register 
Allocator

MIR

LIR

Bytecode



Ion

Warp Builder

Optimizer

CacheIR

Register 
Allocator

MIR

LIR

CodeGenerator
Native 
Code

Bytecode



Bailouts
● Happen when our assumptions about types are wrong :(
● JavaScript is a flexible language:

● Forces us to drop back to baseline interpreter
○ But we can attach a new stub to handle the different type
○ If this happens often enough, ion compiled code is invalidated



Garbage Collection



What’s a garbage collector?
● Manages allocating and freeing memory automatically
● Maintains a graph of objects

○ Known live objects are called “roots”
● Mark and sweep algorithm

○ Starting at roots, mark all reachable objects as live
○ Then we know it’s safe to get rid of any unmarked objects



Generational Garbage Collection

Newly Allocated 
Object



Generational Garbage Collection

Newly Allocated 
Object

Nursery



Generational Garbage Collection

Newly Allocated 
Object

Nursery

Minor GC



Generational Garbage Collection

Newly Allocated 
Object

Nursery

Minor GC

Tenured Heap



Generational Garbage Collection

Newly Allocated 
Object

Nursery

Minor GC

Tenured Heap

Major GC



Generational Garbage Collection

Newly Allocated 
Object

Nursery

Minor GC

Tenured Heap

Major GC



Cycle-collection
● Cycles between the host environment and JavaScript

○ e.g. a C++ DOM object holds a reference to a JavaScript callback, which holds a reference to the 
DOM object

● The Garbage Collector can’t see these cycles
● In Firefox, DOM objects are ref-counted and allocated separately

○ Need careful cooperation between the DOM cycle collector and the garbage collector



Builtins



Builtins
● Provide “standard library” functionality:

○ e.g. Math, String, RegExp, Intl, Map, Set etc.
● Implemented in a mix of “Self-hosted” JavaScript and C++

○ JavaScript where we can :)
○ C++ when necessary:

■ Sometimes performance
■ Sometimes to be able to use third-party libraries like ICU4C

● Self-hosted JavaScript is a subset of JavaScript
○ Restricted to avoid security problems, e.g. with prototype pollution



Example: Internationalization



Example: Internationalization
● Self-hosted code

○ Provides API exposed to JavaScript
● C++ code

○ Implementation of objects like Intl.NumberFormat
○ Handle integration with internationalization libraries

● ICU4C and CLDR
○ Standard internationalization library used by browsers and operating systems
○ CLDR provides underlying data for each language and locale supported



Example: Regular Expressions



Example: Regular Expressions
● Self-hosted code

○ Provides API exposed to JavaScript
● C++ code

○ Handle integration with underlying regular expression library
● Irregexp library

○ Irregexp is like a microcosm of the engine as a whole, it has its own:
■ Parser
■ Bytecode
■ Interpreter
■ Just-in-time compiler

○ Originally written for V8, we have shim layer which emulates V8’s memory management



Interested in contributing to SpiderMonkey?
Many TC39 proposals can be implemented in 
JavaScript using self-hosting code

You don’t have to be an expert :)

Contact us:

● Matrix: #spidermonkey:mozilla.org

● Bugzilla: 
https://bugzilla.mozilla.org/show_bug.cgi?id=1435811

https://craftinginterpreters.com/ 

https://bugzilla.mozilla.org/show_bug.cgi?id=1435811
https://craftinginterpreters.com/


Byte-sized architectures



The view from 9th avenue
● We all have our own point of view on the 

world…



The view from 9th avenue
● We all have our own point of view on the 

world…

We are here :)



The view from 9th avenue
● We all have our own point of view on the 

world…
● That’s not a bad thing!

We are here :)



The view from 9th avenue
● We all have our own point of view on the 

world…
● That’s not a bad thing!
● Everyone has something to teach us :)

We are here :)



How does this relate to software?
Every member of the team has a different point of view of the system

For a really complicated system, no one can understand the whole thing

So how can we build a shared understanding?



Byte-sized Architectures
● The team gets together for about an hour
● For the first five minutes everyone draws an architecture diagram
● Then we take turns showing our drawings and discussing them
● Not our idea :)

○ Comes from Andrea Magnorsky’s bytesize architectures 
(https://www.roundcrisis.com/2021/09/28/bytesize-architecture-sessions/, 
https://bytesizearchitecturesessions.com/)

○ Her version is a bit more complicated

https://www.roundcrisis.com/2021/09/28/bytesize-architecture-sessions/
https://bytesizearchitecturesessions.com/


A collection of our byte-sized architectures



The Benefits
● Quiet time together as a team, working on our drawings

○ Our team is completely remote, so this is important for us
● The drawings are definitely useful

○ I used ours to help prepare this presentation :)
● But more important: the questions and conversations



Psychological Safety
Feel safe to raise ideas, voice opinions, ask questions and admit mistakes without 
fearing the consequences.

Byte-sized architectures help build psychological safety in the team:

● Admit when we don’t know something
● Ask questions



ありがとうございました
thank you!!


