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What is a Spider Monkey?
● Genus Ateles
● Most intelligent New 

World Monkey
● Lack thumbs, but 

have very long limbs 
and tails



What is SpiderMonkey?

● The JavaScript engine in Firefox
● An engine is the part of the browser which runs 

JavaScript code
● An engine consists of:

○ Parsers
○ Interpreters
○ Just-in-time compilers
○ Garbage collection
○ A library of useful functions



Simplified SpiderMonkey Architecture



Frontend



What is the Frontend?
Takes JavaScript source provided by the host environment

And transforms it into a format usable by the rest of the engine.



Tokenizer
A ‘token’ is an indivisible unit in the input to the parser:

The ‘tokenizer’ divides the input source

into a list of tokens



Parser
The parser uses the list of tokens and the grammar of JavaScript

to construct an Abstract Syntax Tree (AST)



Parsers in SpiderMonkey
● SpiderMonkey has four parsers!
● Syntax Parser

○ Runs quickly
○ Avoids allocating memory when possible
○ Only checks for syntax errors

● Full Parser
○ Runs more slowly
○ Builds the AST

● And there’s a version of each parser for UTF-8 and UTF-16 input.



Virtual Machines and Bytecode
A virtual machine is an abstract definition of a computer

● Defined at a higher level than the instruction set of an actual CPU
● Bytecodes are the instructions understood by the virtual machine

○ e.g. bytecode from SpiderMonkey:



Bytecode Generation
AST (input)

Bytecode (output)

Bytecode
Generation

Interpreter (consumer)



Interpreters



What is an interpreter?
Basically a program which runs the instructions for another program :)

Can work by walking the Abstract Syntax Tree directly

● Early versions of Ruby worked this way
● Simpler, but slower

Or by implementing a virtual machine:

● Interpreter runs in a loop, executing each bytecode one by one
● Implemented as a giant case or goto statement

○ Each label corresponds to a bytecode
● Faster



The “C++” Interpreter
● Simplest interpreter in SpiderMonkey
● Implemented as a giant goto statement inside a loop
● Each label corresponds to a bytecode

○ e.g. GetArg:



Baseline Interpreter
Similar to the C++ interpreter…

But it also collects type information and other metadata as it runs!

● e.g, consider this function again:

● The parameter x is likely a number, probably an integer

How can we use this information?



Just-in-time
Compilers



Just-in-time Compilers
● Use data gathered while interpreting code to choose what to compile
● Most JavaScript code is only executed once!
● Trade off between compile time and execution time:

○ Baseline interpreter: no compile time at all, but runs slowly
○ Baseline compiler: faster compile time, generated code is not optimized
○ Ion: slower compile time, generated code is optimized



C++ Representation of JavaScript Scripts

JSScript

BaseScript

ImmutableScriptData

JitScript

BaselineScript

IonScript

Provides: Metadata

Provides: Bytecode
Used by: C++ Interpreter

Provides: Inline caches
Used by: Baseline Interpreter

Provides: Native code
Used by: Baseline Compiler
Provides: Optimized native code
Used by: Ion



Inline Caches
● A dynamic dispatch is when we branch based upon type information

○ e.g. whether the function is applied to strings or integers
● An inline cache stores the result of previous dynamic dispatches

○ Avoids cost of branching
○ Code is specialized for the particular type
○ Stored inline with the function itself

● This also gives us metadata:
○ Type information
○ Which parts of a function are actually used



Baseline Interpreter
● Basic idea: replace opcodes with stubs in inline caches

● The baseline interpreter will create stubs in the inline cache for:
○ BinaryArith.Int32Mul
○ BinaryArith.Int32Add

● Executing this code will be much faster next time (maybe 6x faster)
● Stores data in an intermediate format called CacheIR



Baseline compiler
● Generates native code for each bytecode in the script
● Avoids overhead of interpreter switch / dispatch loop

○ Still uses Inline Caches to handle different types
● Is maybe 2x faster than Baseline Interpreter



Ion
CacheIR

Bytecode
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Bailouts
● Happen when our assumptions about types are wrong :(
● JavaScript is a flexible language:

● Forces us to drop back to baseline interpreter
○ But we can attach a new stub to handle the different type
○ If this happens often enough, ion compiled code is invalidated



Garbage Collection



What’s a garbage collector?
● Manages allocating and freeing memory automatically
● Maintains a graph of objects

○ Known live objects are called “roots”
● Mark and sweep algorithm

○ Starting at roots, mark all reachable objects as live
○ Then we know it’s safe to get rid of any unmarked objects



Generational Garbage Collection

Newly Allocated 
Object
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Cycle-collection
● Cycles between the host environment and JavaScript

○ e.g. a C++ DOM object holds a reference to a JavaScript callback, which holds a reference to the 
DOM object

● The Garbage Collector can’t see these cycles
● In Firefox, DOM objects are ref-counted and allocated separately

○ Need careful cooperation between the DOM cycle collector and the garbage collector



Builtins



Builtins
● Provide “standard library” functionality:

○ e.g. Math, String, RegExp, Intl, Map, Set etc.
● Implemented in a mix of “Self-hosted” JavaScript and C++

○ JavaScript where we can :)
○ C++ when necessary:

■ Sometimes performance
■ Sometimes to be able to use third-party libraries like ICU4C

● Self-hosted JavaScript is a subset of JavaScript
○ Restricted to avoid security problems, e.g. with prototype pollution



Example: Internationalization



Example: Internationalization
● Self-hosted code

○ Provides API exposed to JavaScript
● C++ code

○ Implementation of objects like Intl.NumberFormat
○ Handle integration with internationalization libraries

● ICU4C and CLDR
○ Standard internationalization library used by browsers and operating systems
○ CLDR provides underlying data for each language and locale supported



Example: Regular Expressions



Example: Regular Expressions
● Self-hosted code

○ Provides API exposed to JavaScript
● C++ code

○ Handle integration with underlying regular expression library
● Irregexp library

○ Irregexp is like a microcosm of the engine as a whole, it has its own:
■ Parser
■ Bytecode
■ Interpreter
■ Just-in-time compiler

○ Originally written for V8, we have shim layer which emulates V8’s memory management



Interested in contributing to SpiderMonkey?
Many TC39 proposals can be implemented in 
JavaScript using self-hosting code

You don’t have to be an expert :)

Contact us:

● Matrix: #spidermonkey:mozilla.org

● Bugzilla: 
https://bugzilla.mozilla.org/show_bug.cgi?id=1435811

https://craftinginterpreters.com/ 

https://bugzilla.mozilla.org/show_bug.cgi?id=1435811
https://craftinginterpreters.com/


Byte-sized architectures
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The view from 9th avenue
● We all have our own point of view on the 

world…
● That’s not a bad thing!
● Everyone has something to teach us :)

We are here :)



How does this relate to software?
Every member of the team has a different point of view of the system

For a really complicated system, no one can understand the whole thing

So how can we build a shared understanding?



Byte-sized Architectures
● The team gets together for about an hour
● For the first five minutes everyone draws an architecture diagram
● Then we take turns showing our drawings and discussing them
● Not our idea :)

○ Comes from Andrea Magnorsky’s bytesize architectures 
(https://www.roundcrisis.com/2021/09/28/bytesize-architecture-sessions/, 
https://bytesizearchitecturesessions.com/)

○ Her version is a bit more complicated

https://www.roundcrisis.com/2021/09/28/bytesize-architecture-sessions/
https://bytesizearchitecturesessions.com/


A collection of our byte-sized architectures



The Benefits
● Quiet time together as a team, working on our drawings

○ Our team is completely remote, so this is important for us
● The drawings are definitely useful

○ I used ours to help prepare this presentation :)
● But more important: the questions and conversations



Psychological Safety
Feel safe to raise ideas, voice opinions, ask questions and admit mistakes without 
fearing the consequences.

Byte-sized architectures help build psychological safety in the team:

● Admit when we don’t know something
● Ask questions



ありがとうございました
thank you!!


